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1. Introduction

Little Higgs [1] theories are accorded pride of place among composite models of elec-

troweak (EW) symmetry breaking. These models solve the ‘little’ hierarchy problem and

are not immediately ruled out by precision EW measurements. Continuous advances in

model building [2, 3] have given rise to a parity (T -parity, analogous to R-parity in SUSY)

that helps little Higgs theories better satisfy precision EW data by excluding many danger-

ous tree level interactions. Another welcome consequence of such a parity is the presence

of a stable dark matter candidate in the spectrum, the lightest T -odd particle (LTP). A

recent set of papers [4, 5] have shown that quantum anomalies violate T -parity by the

inclusion of Wess-Zumino-Witten [6, 7] terms in the full lagrangian. While these terms are

suppressed, and therefore do not introduce problems with precision data, they render the

LTP unstable. One may wonder how generic this instability is in little Higgs models. Is

it possible to find UV completions of little Higgs models where the stability of the LTP is

not spoiled by anomaly terms? In this short paper we consider several possible means of

achieving this.

In section 2 we investigate the conditions under which WZW anomalies may be com-

pletely removed from a little Higgs theory. The quantized nature of the WZW term leads

one to hope that through some discrete choice of model parameters this can be achieved.
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We begin with models based on anomaly-free global symmetries. Here we find that in

QCD-like UV completions of such models the condensing fermions cannot achieve the de-

sired symmetry breaking pattern due to problems of vacuum alignment. In addition, we

consider moose models and their WZW terms for distinct choices of link direction. We find

that these models will always have anomalous terms, although these may possess a parity.

The parity of anomalous terms in multi-link moose models is the focus of section 3.

Here we discuss the parity of WZW terms as a relabeling symmetry of the UV theory. We

consider this parity in the context of a Minimal Moose [8] like model and show that it can

lead to a stable LTP.

Finally, in our appendix we discuss a simple way by which the anomalous vertices can

be distinguished at the Large Hadron Collider (LHC). Here we also summarize some results

relevant to computing WZW vertices.

2. The problem with T-parity

Hill and Hill [4, 5] recently pointed out that T -parity is violated in little Higgs theories by

WZW terms [6, 7]. They convincingly show that such terms will be present in most little

Higgs theories discussed in the literature if one imagines a QCD-like UV completion. In

what follows, we explore how general this conclusion is and what sort of structures may

give rise to a theory free of WZW terms.

2.1 Linear UV completions

The most straightforward way to avoid anomalous vertices in a coset model is to UV

complete the theory into a linear sigma model of fundamental scalars. WZW vertices

arise because of anomalies from condensing fermions; remove the fermions and you remove

the anomalies. However, such an approach reintroduces the hierarchy problem composite

Higgs theories were created to solve. It is possible to avoid this problem by utilizing a

supersymmetric linear sigma model as detailed in ref. [9]

2.2 Anomaly free groups

Another way to avoid WZW terms is to consider a little Higgs theory with global symme-

tries that are manifestly anomaly free. Indeed, models based on the SO(N) and Sp(N)

groups have been developed [10, 11], some of which have tree level T -parity, and a fermionic

UV completion of one such model has been carried out [12]. While it is possible to use

fermions to implement the UV global symmetry of these theories, whether or not the vac-

uum will realize the IR coset remains a question of vacuum alignment. In what follows we

aim to convince the reader that with a QCD-like theory the vacuum will not align itself into

the necessary pattern.

For simplicity, consider the coset space SOL(N) × SOR(N)/SOD(N). The global

symmetry of this group is anomaly free; if one could realize this symmetry with fermions

then T -parity would not be foiled by anomalies. Here the L × R structure is needed in

order to implement a form of T -parity exchanging L↔ R. A QCD-like UV completion of

this model (shown in figure 1) would consist of quarks transforming as a fundamental and
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SO(N)
ψRψL

SO(N) ;
π

SO(N) SO(N)

Figure 1: A simple-minded attempt to produce a chiral lagrangian with the coset SOL(N) ×
SOR(N)/SOD(N) from a fermionic QCD-like theory is unlikely to succeed.

an anti-fundamental, respectively, under some strong gauge group (we take all the fermions

to be left-handed Weyl fermions and use the L/R-subscripts to designate their position in

the moose diagram). As specified, this setup will have a larger global symmetry than we

desire: SUL(N) × SUR(N). One can try to amend the situation by introducing Majorana

masses,

L ⊃ ψT
LM

(L)ψL + ψT
RM

(R)ψR (2.1)

where M (L,R) are proportional to the identity in flavor space (we suppress flavor indices to

avoid clatter).

We would like the condensate to be 〈ψLψ
T
R〉 ∝ 1 so as to break the global symmetry

to the diagonal subgroup. The low energy theory is then described as usual in terms of

the pion fields U = exp(2iπ) which span the coset space. Under the global symmetries

U transforms like U → LUR†, as dictated by the structure of the condensate. We need

to choose M (L,R) ∼ ΛS so that SU(N) is strongly broken. Treating the M (L,R) as a set of

spurions transforming as

M (L) → L∗M (L)L†, M (R) → RM (R)RT (2.2)

we see that the only mass term we can write down for the chiral lagrangian is

Lmass = Tr
(

UM (R)UTM (L)
)

(2.3)

which indeed gives mass to all the pions associated with the SU(N), but not the SO(N)

generators. Raising the mass terms, M (L,R)

ij → ∞ we decouple all the unwanted goldstones

and are left with an SOL(N) × SOR(N)/SOD(N) coset space.

However, there is something wrong with this picture. AsM (L,R) → ∞ all the underlying

quarks become heavy and decouple, so how is it that we still have any goldstones left?

This is in odds with the persistent mass conjecture [13]: very heavy fermions cannot form

a massless goldstone boson. The resolution to this apparent contradiction is that we are

dealing with the wrong goldstones because we have chosen the wrong symmetry breaking

pattern. To see this note that the condensate 〈ψLψ
T
R〉 6= 0 is not the only way the vacuum

can align itself. The confining strong group must be such that it allows for 〈ψLψ
T
L〉 6= 0

and 〈ψRψ
T
R〉 6= 0. If this were not the case we would not be able to write the Majorana

mass terms to begin with. This new configuration is the correct alignment. The low

energy theory then contains two pions fields UL,R = exp(2iπL,R) each spanning the coset

SU(N)/SO(N). It is possible to write a mass term for each independently,

Lmass = Tr
(

ULM
(L) +M (L)UT

L

)

+ L→ R (2.4)

– 3 –
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The paradox is now resolved. As M (L,R) → ∞ our pions decouple; none are left in the spec-

trum. Therefore, adding Majorana masses will not get us the desired symmetry breaking

pattern. Indeed, by continuity, this argument seems to imply that the addition of even a

small Majorana mass term will misalign the vacuum (although the existence of a phase

transition is possible).

Having put the idea of using fermion masses to achieve the desired symmetry to rest,

one could consider trying to enforce an SO(N) global symmetry by adding scalars with a

Yukawa coupling to the confining quarks: yψT
L hψL.1 The Yukawa coupling, y must be very

large or else we are only softly breaking the global SU(N) symmetry. Unfortunately, such

a setup seems problematic as well. If the scalar’s mass is much heavier than ΛS , we should

integrate it out and generate a 4-fermion operator. This, however, will be suppressed

and hence constitute only a soft breaking term. Keeping the scalar mass lighter than ΛS

will require fine-tuning because of the large Yukawa. This solution will not work without

additional ingredients.

Alternatively (or in some sense, equivalently), we can consider 4-fermion operators,

L ⊃ y2

M2
ψT

LψLψ̄
T
L ψ̄L + L→ R (2.5)

Such terms possess a chiral symmetry which forbids fermion masses and the correct align-

ment of the vacuum seems more plausible. Once again unless we fine-tune M ∼ ΛS , this

term will only lead to a soft breaking of SU(N). However, in analogy with walking techni-

color [14], one can imagine a strongly interacting theory which gives rise to large anomalous

dimensions for such 4-fermion operators. In that case, the breaking of the global SU(N)

can be strong without any fine-tuning.

Both of the solutions proposed in the last two paragraphs (a finely tuned scalar or a

strong theory with operators of large anomalous dimension) seem difficult to implement in

standard QCD-like theories, and to the best of the authors’ knowledge no realistic exam-

ples of these mechanisms are known. However, if one considers supersymmetric QCD-like

theories, then the situation is considerably more hopeful. Indeed, one can then naturally

stabilize the scalar or, alternatively, have operators with large anomalous dimensions (such

as the gauge duals of fermions in the bulk of AdS). It may be interesting to construct an

explicit example of such a theory.

Although we have not proven a no-go theorem, we hope we have convinced the reader

of the following: it seems unlikely that a natural, non-supersymmetric strongly coupled

theory can give rise to a chiral lagrangian with a coset space of SOL(N)×SOR(N)/SOD(N).

Similar considerations apply to any other global group with only real representations, e.g.

Sp(N) groups. A counterexample to this conclusion would constitute a very welcome

addition to the model builder toolkit.

2.3 Anomalies in Moose models

In light of the preceding discussion, to consider fermionic UV completions it seems natural

1The scalar can also be charged under the strong group. In that case, the strong group could also be

SU(N).
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to work with SU(N) moose models. If we ignore problems with the Higgs quartic cou-

pling [15], such moose theories are easy to UV complete.2 Each link becomes two Weyl

fermions condensing at a high scale. If we construct these models with identical strong

groups for each link, the only freedom we have in is in selecting the representation of the

condensing fermions (N vs. N̄), which in turn determines the direction of the link fields.

This freedom can be used to cancel gauge anomalies, and one might hope that such arrow

adjustments are sufficient to avoid the anomalies violating T-parity. However, because the

WZW terms are sensitive to the global symmetries of a theory they cannot be removed

through a choice of link direction.

Let us begin by by considering the action of T -parity on a moose model. In a coset

space with the structure G/H, and Lie algebras defined as

Lie(H) = h, Lie(G) = h+ k, (2.6)

a theory with WZW terms over a symmetric space (one where the commutator of two

elements in k lies in h) can be split into parity eigenstates as detailed in [18]. This parity

is defined as the transformation,

π → −π, Ah → Ah, Ak → −Ak (2.7)

Moreover, in models where G = SU(N) × SU(N), all WZW terms have negative parity

under this transformation [18]. We can therefore say that this parity takes

LWZW(π,Ah, Ak) → −LWZW(π,Ah, Ak) (2.8)

Now, for illustration purposes, consider an SU(3) moose model such as the one considered

in ref. [8] but with only two links for simplicity. This is shown in figure 2. We gauge the

SU(2) × U(1) subgroup of each SU(3) where SU(2) sits in the upper-left hand corner and

U(1) corresponds to the T8 generator. We can schematically write the Lagrangian for this3

as

L ∼ Lkin(π1, A) + Lkin(π2, A) + LWZW(π1, A) + LWZW(π2, A) (2.9)

where π1,2 are the pions associated with the two links and A are the gauge fields, AL,R on

the left and right sites. The usual definition of T -parity takes

U1/2 → ΩU †

1/2
Ω, AL/R → AR/L (2.10)

2The problem of generating a large quartic coupling in such theories is by no means simple. In [15],

the author cogently argues that one will not generate a sufficiently large quartic in theories based on

deconstruction. The solution offered in [16] relies on having large number of sites and the authors find

that the EW scale is parametrically v2
∼ f2/N2, where f ∼ 1 TeV is the “pion” decay constant and N2

is the total number of sites (two extra dimensions). However, this scaling is essentially the same (albeit

in one additional extra dimension) as the one worked out in the original little Higgs paper [1]. In such

constructions, with d extra dimensions, the EW scale is given by v2
∼ f2/Nd. Therefore, adding extra

dimensions does not help much because parametrically v2
∼ f2/(total # of sites) and in realistic models

the number of sites is ∼ O(1). Other ways of generating a large quartic include large Yukawa coupling to

matter [8] or integrating out a heavy scalar with cubic coupling to the higgs [17].
3The relative sign between the WZW terms is crucial. It can be derived by noting that the two π fields

transform oppositely under the left and right groups, and that the gauged groups here are anomaly free.

We thank Hsin-Chia Cheng for pointing out a sign error in an earlier draft of this paper that lead to the

wrong conclusion regarding the existence of an LTP.
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GL1

GL2

GR1

GR2
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π1

π2

π1

π2

Figure 2: The symmetries of the two link moose

where

Ω =







1 0 0

0 1 0

0 0 −1






(2.11)

and we have labeled the Goldstones either d (for block-diagonal) or h (because some com-

bination of these will become the Higgs):

U = e2iπ/fπ , π →
(

d h

h† d

)

(2.12)

T -parity takes Lkin to itself. However, as we have just seen, in an SU(3) × SU(3)/SU(3)

model the WZW terms flip their sign under the action of T-parity,

LWZW(π,AL, AR)
T-Parity−→ −LWZW(π,AL, AR) (2.13)

An example of this is found in the famous ‘Cheshire Cat’ term with five pion fields that

goes to minus itself under π → −π. Thus, as pointed out by Hill and Hill [4, 5], such

terms violate T-parity as defined in eq. (2.10), independent of the direction of the arrows

on the links. This happens because reversing the direction of our links can cancel gauge

anomalies, but cannot remove the global anomalies associated with WZW terms. As can

be seen in figure 2, there are anomalous global symmetries present in moose models.

Despite this conclusion, the existence of WZW terms does not necessarily forbid a

parity of the theory. As we shall see in the next section, when the two links have opposite

orientation, a modification of T -parity remains intact and ensures a stable particle.

3. WZW terms in multilink Moose models

There is, however, more to the story of anomalies in multi-link moose models. Although

these models contain WZW terms, when we include multiple links placed in opposite di-

rections we find a parity of the WZW sector! A theory with this parity has interesting

– 6 –
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phenomenological implications, the most striking of which is that the LTP is stable. We

will begin by describing the parity of WZW terms defined for symmetric spaces, and then

show how an extended version T -parity acts to ensure a stable LTP. The example we con-

sider is the two-link model from the previous section, but our arguments can be generalized

to physical models with four or more links.

3.1 T -parity

We can now exploit the previously defined parity in our multilink moose model to define

a new T -parity under which the full theory is invariant. In this case the direction of the

link fields is important. As a simplified example, consider a theory of two links positioned

in opposite directions. This theory will have the following kinetic terms,

Lkin(π1, π2, A) = f2
π Tr

∣

∣

∣∂U1 − iALU1 + iU1AR

∣

∣

∣

2

(3.1)

+ f2
π Tr

∣

∣

∣
∂U2 − iARU2 + iU2AL

∣

∣

∣

2

Defining the vector and axial combinations,

AV/A =
1√
2

(

AL ±AR

)

(3.2)

we can write the kinetic term as,

Lkin(π1, π2, A) = f2
π Tr

∣

∣

∣

∣

∂U1 −
i√
2

[

AV , U1

]

− i√
2

{

AA, U1

}

∣

∣

∣

∣

2

(3.3)

+ f2
π Tr

∣

∣

∣

∣

∂U2 −
i√
2

[

AV , U2

]

+
i√
2

{

AA, U2

}

∣

∣

∣

∣

2

We identify the antisymmetric pions

πA =
1√
2
(π1 − π2) =

(

dA hA

h†A dA

)

(3.4)

as the light pions whose mass is protected by collective symmetry breaking. The dA are

eaten by the axial gauge-fields and hA serves as the SM’s higgs doublet.

Now, we define T -parity as,

U1/2 → ΩU2/1Ω, AL/R → AR/L (3.5)

Under this parity, the WZW terms transform into themselves,

LWZW(π1, AL, AR) + LWZW(π2, AR, AL) (3.6)
T−parity−→ LWZW(π2, AR, AL) + LWZW(π1, AL, AR)

so the entire WZW sector is left invariant. This parity guarantees the stability of an LTP.

Under this parity, the would be SM Higgs field hA, as well as the heavy pion dS, are even.

– 7 –
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The Higgs’ partner, hS is odd and if lighter than the heavy gauge fields, can serve as the

LTP. Otherwise, the lightest of the heavy guage-fields is the LTP.

This modified T -parity can be easily generalized to the more realistic four-link moose

models that include plaquette operators. To see this it is instructive to consider the UV

perspective of such a theory. The extended version of T -parity we have discussed manifests

itself as a relabeling symmetry of the full Lagrangian. A relabeling of condensing fermions

and gauge fields in the UV tells us that a relabeling of Goldstones and gauge bosons must

be possible in the IR, guaranteeing the preservation of some form of discrete parity. A

forthcoming paper will discuss a more realistic scenario with plaquette operators, along

with the issues one encounters when one includes SM fermions.

4. Conclusions

We have investigated both the conditions for, and phenomenology of, WZW terms in little

Higgs models with T -parity. One way to preserve T -parity is through a linear UV com-

pletion of the chiral lagrangian into a theory with fundamental scalars (which would likely

necessitate supersymmetry). In this paper we explored the possibility of a QCD-like UV

completion free of anomalies. We found that unless one resorts to non-standard fermionic

UV completions with supersymmetry, or operators with large anomalous dimensions, it is

unlikely that anomalous terms can be avoided. Even in moose models with multiple links

WZW anomalies cannot be removed. However, in models with multiple links the WZW

terms do possess a slight modification of T -parity shared by the entire Lagrangian which

permits a stable LTP.
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A. Distinguishing anomalous vertices through spin measurements

For models without T -parity, the LTP decays quickly to two gauge bosons with a lifetime

of order 10−15s [19]. Such a decay would not leave a displaced vertex. A measurement of

the life-time is therefore very difficult without a precise determination of the width which

may be smaller than the experimental resolution even for the normal vertex. However,

it is possible to distinguish this anomalous vertex from a normal three gauge-boson ver-

tex through a spin measurement. If reconstruction of AA is possible, one can form the

distribution of the outgoing gauge-bosons, AV , about the axis of polarization. Since AA

carries unit spin, we expect either cos2 θ or sin2 θ distributions, depending on the initial

polarization of AA, where θ is the angle between the outgoing bosons and the axis of po-

larization. For a normal three gauge-boson vertex we expect a sin2 θ (cos2 θ) distribution if
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dΓA→V V

d cos θ
AA polarization

Regular Anomalous

Transverse sin
2
θ cos

2
θ

Longitudinal cos
2
θ sin

2
θ

Table 1: The angular distribution of the two outgoing SM gauge-boson about the polarization

axis in the rest frame of the heavy vector-boson is a good discriminant between the regular three

gauge-boson vertex and the anomalous one.

AA is transversely (longitudinally) polarized. For the anomalous vertex it is precisely the

opposite behavior as is easily seen by angular momentum conservation in the rest frame of

AA. This is summarized in table 1. The initial polarization of AA can be established to be

longitudinal if it is the product of a heavy fermion decay for example. Such measurements

should help unravel the anomalous nature of the vertex.

B. WZW terms for general G/H chiral lagrangians

In this section we will review the motivation for the WZW term (following [20]) and give

a prescription for computing it in the general G/H case as detailed in [18]. We will make

an effort to keep it as explicit as possible by including normalization factors, factors of i,

and dispensing with the language of differential forms.

WZW terms can be thought about as coming from the requirement of anomaly match-

ing as given by ’t Hooft. Begin by considering a global symmetry G that is linearly realized

by colored fermions far in the UV. Here, one could imagine trying to weakly gauge G if

there was an additional uncolored spectator sector keeping G anomaly free. As one goes

from the UV into the IR and the colored group becomes confining, the condensate breaks

G down to H. The theory’s degrees of freedom change and G/H is realized non-linearly

by Goldstones. Yet, as the fundamental theory preserves gauge symmetry, so should the

low energy effective theory. The Goldstones must reproduce the anomaly of the confined

quarks to cancel the contribution to the anomaly from the spectator sector. Therefore,

WZW terms are added to a Lagrangian in order to reproduce the quarks’ anomalies in the

Goldstone sector.

Before we write down the anomaly terms we should note a distinction that arises when

dealing with anomalies. To calculate an anomaly one must make a choice of regularization

that determines which currents exhibit the anomaly. Regularizing a theory so that all

currents exhibit an anomaly in the same way leads to the so called symmetric anomaly.

Regularizing so that the unbroken subgroup H is anomaly free leads to the covariant

anomaly. In this paper we are interested in the case where H is an anomaly-free vector

subgroup of G. To keep H anomaly free and unbroken we will be interested in the covariant

anomaly. We hope that the following will be useful for anyone attempting to compute

the actual anomalous vertices and note that the distinction between the symmetric and

covariant anomalies does lead to a numerical difference in the coefficients of such vertices.

– 9 –
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B.1 Computation

Chu, Ho, and Zumino [18] give a prescription for calculating the WZW term in general G/H

theories subject to the following conditions: H is anomaly free, reductive, and π4(G/H) =

0. Their formalism is more than what is required for the simple case of chiral symmetry

breaking models, but it would be useful in studying more general models. They calculate

the WZW term to be

LWZW(π) = −i
∫ 1

0

πaGa(π,At)dt + B(0) −B(1) (B.1)

where the B terms are outside the integral sign and

Atµ = e−itπAµe
itπ − i(∂µe

−itπ)eitπ (B.2)

Ga(π,A) =
i

24π2
ǫµνρσ Tr

[

Ta

(

∂µAν∂ρAσ − i

2
∂µAνAρAσ (B.3)

+
i

2
Aµ∂νAρAσ − i

2
AµAν∂ρAσ

)

]

B(t) =
1

48π2
ǫµνρσ Tr

[

1

2

(

Ah
tµAtν −AtµA

h
tν

)(

Ftµν + F h
tµν

)

(B.4)

+iAtµA
h
tνA

h
tρA

h
tσ + iAh

tµAtνAtρAtσ +
i

2
Ah

tµAtνA
h
tρAtσ

]

Above we have defined Ah to be the restriction of A to Lie(H), F h to be the field strength

tensor formed from Ah, and Ta to be a group generator normalized so that Tr(TaTb) = δab.

In the case of chiral symmetry breaking models it is convenient to write

T =

(

t1 0

0 t2

)

(B.5)

where t1 and t2 are elements of the Lie algebra transforming left handed Weyl spinors

under the two product groups.

B.2 Parity in models with chiral symmetry

In this paper we are interested in the case of chiral symmetry breaking where one Weyl

fermion transforms in the N of an SU(N) and the other transforms in the N̄ . The appro-

priate generators in this case are

T V =

(

t 0

0 −t∗

)

, TA =

(

t 0

0 t∗

)

(B.6)

for vector and axial generators, respectively. Consider the parity on these generators that

takes

T V → T V , TA → −TA (B.7)

The WZW term of a chiral symmetry breaking model is odd under this parity. To show

this, take all the terms in LWZW and divide them into parity even and odd parts. First
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consider the terms in Ga from eq. B.3. Here the generator Ta is in LieK, so the remaining

generators must contain an odd number of TA for a given term to be of even parity. If one

makes use of this, combined with the hermiticity of the lie algebra generators, the cyclic

properties of the trace, and the antisymmetry of the epsilon symbol one can show that the

even terms in Ga vanish for models of chiral symmetry breaking. The proof that eq. B.4

is odd under this parity proceeds in exactly the same way.
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